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Use of Electromyographic and Electrocardiographic
Signals to Detect Sleep Bruxism Episodes in a

Natural Environment
Tommaso Castroflorio, Luca Mesin, Gianluca Martino Tartaglia, Chiarella Sforza, and Dario Farina

Abstract—Diagnosis of bruxism is difficult since not all contrac-
tions of masticatory muscles during sleeping are bruxism episodes.
In this paper, we propose the use of both EMG and ECG signals
for the detection of sleep bruxism. Data have been acquired from
21 healthy volunteers and 21 sleep bruxers. The masseter surface
EMGs were detected with bipolar concentric electrodes and the
ECG with monopolar electrodes located on the clavicular regions.
Recordings were made at the subjects’ homes during sleeping.
Bruxism episodes were automatically detected as characterized by
masseter EMG amplitude greater than 10% of the maximum and
heart rate increasing by more than 25% with respect to baseline
within 1 s before the increase in EMG amplitude above the 10%
threshold. Furthermore, the subjects were classified as bruxers and
nonbruxers by a neural network. The number of bruxism episodes
per night was 24.6 ± 8.4 for bruxers and 4.3 ± 4.5 for controls (P
< 0.0001). The classification error between bruxers and nonbrux-
ers was 1% which was substantially lower than when using EMG
only for the classification. These results show that the proposed
system, based on the joint analysis of EMG and ECG, can provide
support for the clinical diagnosis of bruxism.

Index Terms—Bruxism, cardiac activation, concentric electrode,
masseter muscle, surface EMG.

I. INTRODUCTION

S LEEP bruxism (SB) is an oral parafunction characterized by
grinding or clenching of the teeth during sleep that is associ-

ated with an excessive (intense) sleep arousal activity [1]. Sleep
bruxism should be distinguished from the awake bruxism that is
mainly the result of emotional tension or psychosocial disorders,
and forces the subject to respond with a prolonged contraction
of the masticatory muscles [2]. Bruxism while awake is com-
monly characterized by clenching, while SB has a combination
of clenching and grinding [3], [4].

Large scale epidemiologic surveys on self-reported SB
showed a prevalence of 8% in the adult population, an equally
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distribution of the disorder in men and women, and a tendency to
decline with increasing age, both in North America and Europe
[5], [6]. The pathophysiology of SB is still unclear. Scientific
data supporting an association between SB and stress, anxiety,
and the hypothalamic-adrenal axis are not definitive [7], [8].

Several types of rhythmic oromotor activities can be present
during sleep, occurring in almost 60% of the adult popula-
tion [9], while the percentage of people fulfilling the diagnostic
criteria for an SB diagnosis is much smaller. Thus, rhythmic oro-
motor activities may be considered a normal sleep-related motor
behavior [7], [10]. Morphologic, psychosocial, or pathophysio-
logical factors contribute to an increase in frequency, duration,
and intensity of these physiological muscle activities to patho-
logical levels. The diagnosis of SB based on these activities is
currently based on the “bruxism generator model” [10].

A well-defined oromotor activity has proven to constitute
the basic pattern of SB. This unique and complex motor pat-
tern is called “rhythmic masticatory muscle activity” (RMMA)
[8], [10], [11], [12]. During an RMMA, the electromyogram
(EMG) of masticatory muscles presents bursts of periodic ac-
tivity at a frequency of approximately 1 Hz and amplitude of
approximately 10% of the maximum voluntary clenching ac-
tivity while awake (data for the masseter muscle) [11]. In con-
trast to mastication, sleep-related RMMA are characterized by
co-contraction of opening and closing jaw muscles and these
purposeless movements rarely last more than 8 s [12].

The occurrence of RMMA can be identified during awake
and sleep stages by using multiple physiological measurements
supplemented with audio and video recordings [8], [11], [12].
A major disadvantage of this equipment is the high cost and
amount of time needed for manual/visual scoring [13]. Further-
more, these systems are mainly used in laboratory settings, thus
providing information that may not be representative of oral
behaviors as they occur in the natural environment (at home).
Finally, the scoring of masticatory muscle activity under these
conditions is mainly based upon subjective evaluation and skill
of the examiner [13]. Portable EMG devices [14], [15] may solve
some of these limitations. However, because bruxers exhibit
many nonpathological orofacial activities during sleep [16], the
analysis of the EMG tends to substantially overestimate SB
episodes. Furthermore, some diagnostic devices based on den-
tal contact detection have been introduced with promising re-
sults [17]–[19].

Interestingly, recent studies show that the SB event is pre-
ceded by a sudden shift in autonomic cardiac and respiratory
activity, and by a specific brain activation [12] that suggest
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overactivation of the autonomic system as closely related to the
pathogenesis of SB [8], [11], [12]. The hypothesis of the study
is that heart rate could be used in addition to EMG monitoring to
improve the accuracy in automatic detection of bruxism events.
In this study, we exploit this idea and propose a system based
on the joint analysis of EMG and ECG for accurate detection of
SB episodes and thus for the automatic diagnosis of bruxism.
The possible improvement in the detection of SB episodes with
respect to the classic approach based exclusively on EMG is
investigated. The signals are recorded by a compact portable
device (Bruxoff, Spes Medica, Battipaglia, Italy) that was used
in a natural environment by the subjects of the study without
technical support during use (after appropriate training).

II. MATERIALS AND METHODS

A. Subjects

The study was performed on 46 subjects. The subjects were
selected among patients referring to a private dental clinic, in an
urban area of the northern Italy, for the treatment of discomfort,
fatigue, or pain of the jaw muscles, and between patients refer-
ring for habitual dental control. Each subject was classified as
bruxer or nonbruxer by an expert clinician, on the basis of the
clinical diagnostic criteria for SB, as described by the American
Academy of Sleep Medicine [1]. According to these criteria, a
subject is identified as a bruxer if: 1) he/she reports or is aware of
tooth grinding sounds or tooth clenching during sleep; 2) one or
more of the following signs is present: a) abnormal teeth wear;
b) discomfort, fatigue, or pain of the jaw muscles and locking of
the jaws on awakening; c) hypertrophy of the masseter muscles
on voluntary forceful clenching; d) jaw muscle activity cannot
be better explained by another current sleep disorder, medical, or
neurologic disorder, medication use, or substance use disorder.

With these criteria, 25 bruxer subjects (mean age± SD: 31.05
± 8.42 years; 10 men and 15 women) were selected as study
group from 57 patients referring to the dental clinic in the period
September 2010–January 2011, and 21 healthy age- and gender-
matched subjects (mean age ± SD: 32.89 ± 9.73 years, 10 men
and 11 women) were selected to constitute the control group.
Both bruxers and nonbruxer subjects were also screened for
temporomandibular disorders (TMD) according to the research
diagnostic criteria for TMD (RDC/TMD) [20].

Exclusion criteria for both sleep bruxers and control in-
dividuals were: 1) presence of prosthodontic rehabilitations,
2) missing teeth, 3) periodontal disease, 4) according to Rompré
et al. [8], Group II and/or Group III TMDs (discal and/or artic-
ular TMDs) [20] as a primary complaint to facilitate the clinical
selection of candidate bruxer subjects according to the diagnos-
tic criteria for SB, 5) a medical history of neurological disor-
ders, mental disorders, or sleep disorders (e.g., apnea, periodic
leg movements, and insomnia). All the subjects were unmedi-
cated at the time of recording, and were not under the effect of
alcohol, nicotine, or caffeine. According to Rompré et al. [8]
subjects exhibiting a high value of pain on the VAS scale (ques-
tion 7 of the RDC/TMD) were classified as low level bruxers,
subjects exhibiting a low value of pain were classified as high-

Fig. 1. Bruxoff R© and the CoDe R© (Spes Medica, Battipaglia, Italy) electrode
used in this study for the detection of myoeletric signals from the masseter
muscles. This electrode was chosen to avoid any orientation problem. At the top
a schematic representation of the electrode location over the masseter muscle is
shown. Black line: gonial angle-cantus line used as anatomical landmark.

level bruxers, while subjects exhibiting no pain were classified
as healthy.

After the selection procedure, four bruxers were excluded
from the analysis because they did not complete the experimen-
tal procedures. One of these four subjects did not tolerate the
presence of the wires of the recording device during sleeping
and the other three interrupted the recordings after less than
4 h of sleep. Therefore, the results are presented for 21 patients
and 21 controls. The procedures were approved by the local
ethic committee. All individuals gave their informed consent in
accordance with the Helsinki Declaration and understood that
they were free to withdraw from the experiment at any time.

B. Recordings

The participants completed a questionnaire concerning
awareness of sleep bruxism, anxiety, sleep habits, stress, ner-
vousness, fatigue, current facial pain intensity, fatigue of jaw
muscles, and painful jaw upon awakening. A pain evaluation
numerical rate scale (question 7 of the RDC/TMD: “How would
you rate your facial pain on a 0 to 10 scale at the present time,
that is right now, where 0 is “no pain” and 10 is “pain as bad as
could be”?”) was scored by each subject at the moment of the
delivery of the portable device to self report the pain intensity
in the craniofacial region.

A portable device (Bruxoff, Spes Medica, Battipaglia, Italy)
with three channels was used for recording. Two channels were
used to acquire surface EMG bilaterally from the masseter, and
the third channel was used to acquire the electrocardiogram
(ECG). The three signals were sampled at 800 Hz, with 8 bit
resolution. The data were stored on a MicroSD card as a bi-
nary file. The surface EMG channels were filtered between 10
and 400 Hz with gain 4300. The ECG channel was filtered be-
tween 15 and 160 Hz with gain 700. Surface EMGs from the
masseter muscle of both sides were detected with disposable
bipolar concentric electrodes (CoDe, Spes Medica, Battipaglia,
Italy) [21], with a radius of 16 mm and with detection site made
of AgCl (Fig. 1). These electrodes were chosen to permit an easy
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application by the subject, avoiding the electrode orientation
problem and reducing EMG crosstalk [21], [22].

The ECGs were detected with two disposable monopolar elec-
trodes located bilaterally on the clavicular region. EMG and
ECG signals were recorded during two consecutive nights (at
least 4 h of sleep per night). The subjects used the device and
mounted the electrodes at their homes without technical assis-
tance, after prior training. The first night was a familiarization
session, while the recordings during the second night were used
for the data analysis.

At the beginning of the recording, the subjects were asked
to perform three maximum voluntary clenching (MVC) lasting
3 s each and separated by 10 s of rest [23]. The greatest of the
MVC measures was used for normalizing the EMG amplitude
as a percent of MVC.

C. Signal Analysis

The amplitude of the surface EMG and the heart rate (HR)
were extracted from the raw EMGs and ECGs. The raw EMGs
were digitally low-pass filtered (Butterworth filter of order 5)
between 10 and 300 Hz in order to remove high-frequency noise
and the amplitude was estimated as the average rectified value
(ARV) from intervals of 1 s duration.

From the EMG ARV during the MVC and during bruxism
episodes (see below for the description of the method of detec-
tion of SB), an asymmetry index was calculated as follows:

As =
ARVDX − ARVSX

ARVDX + ARVSX
% (1)

where ARVDX /ARVSX is the amplitude of the EMG of the
right/left masseter muscles, respectively. The asymmetry in-
dex ranges from +100% to −100%; positive values indicate a
stronger right side muscular activity, while negative values indi-
cate a stronger left side muscular activity. The asymmetry index
was calculated in order to demonstrate if EMG signals could be
recorded on only one side or on both sides of the face.

The raw ECG was digitally low-pass filtered (Butterworth
filter of order 5) with cut-off frequency 100 Hz. The QRS com-
plex was enhanced by a matched filter, using as a template the
spike triggered average of QRS waves identified by threshold-
ing a portion of the signal with a high signal-to-noise ratio.
The HR was estimated every second from intervals of 10-s du-
ration preceding the time instant of interest by detecting the
QRS events. The HR values were then restricted to the range
6–240 pulses per minute (ppm) to exclude outliers due to false
positives or false negatives. Finally, values of HR exceeding
the mean value (within the 10 s) by more than 30% were ex-
cluded since they were also considered outliers. The HR at the
specific time instant of interest was then estimated by linear re-
gression of the remaining values, after exclusion of the outliers.
EMG ARV and HR were used for identifying bruxism episodes.
Bruxism episodes were detected when the EMG ARV (average
over the two masseters) was greater than 10% MVC and the
HR increased by more than 25% within 1 s from the increase
of EMG ARV above the 10% MVC. A cut-off of 8-s duration
was used for bruxism episodes to avoid the recording of long

EMG activities that could reflect awakening with or without
sleep stage shifts [12]. Phasic, tonic, and mixed contractions
from both the masseter muscles were identified. According to
Lavigne et al. [11], phasic episodes were characterized by brief,
repetitive contractions with three or more consecutive EMG
bursts lasting 0.25–2 s each, while tonic episodes were charac-
terized by sustained contractions lasting more than 2 s and less
than 8 s (see above). Contractions lasting more than 8 s were
classified as a short awakening [12], while mixed episodes were
contractions lasting less than 8 s and characterized by both short
(less than 2 s) and long contractions (more than 2 s, but less than
8 s). The first and the last hour of sleep were not considered for
the analysis to avoid the inclusion of voluntary contractions.

D. Statistical Analysis

Data obtained from a total of 42 subjects (21 bruxers and
21 controls) were analyzed. The nonparametric Mann–Whitney
test was used to compare the asymmetry index, the number of
SB episodes per night, and the number of SB episodes per hour
between controls and bruxers.

The Spearman correlation test was used to investigate the re-
lation between self-reported pain and the number of SB episodes
and between the total number of masseters’ contractions and the
number of SB episodes (Prism 5, Graphpad Inc.). The signifi-
cance level was set at P < 0.05. Results are reported as mean
and SD.

E. Diagnosis of Bruxism by a Neural Classifier

The features obtained by processing EMG and ECG signals
were: number of contractions, number of bruxism episodes,
number of tonic, phasic or mixed contractions (both for con-
tractions associated or not associated with bruxism), contrac-
tions associated with short awakenings (following bruxism
contractions or other contractions), mean ARV, mean ARV dur-
ing bruxism episodes, average time in which the masseter mus-
cles were contracted during sleep, and duration of sleep. All
these variables were used to classify the subjects involved in the
experiments in three classes [11]: nonbruxer (associated with
the class 0), low-frequency bruxer (number of SB episodes per
hour comprised between 2 and 4) (class 1), and high-frequency
bruxer (more than 4 SB episodes per hour) (class 2). The clas-
sification was also performed using only the variables which
could be obtained by recording only the EMG, without ECG,
for assessing the improvement in diagnostic yield due to the
inclusion of ECG, which is the main novelty of the proposed
approach. The variables only related to EMG were: the number
of contractions, contractions associated with short awakenings,
mean ARV, average time in which the masseter muscles were
contracted during sleep, and duration of sleep. To reduce re-
dundancy in the feature space, the algorithm described in [24]
was used to determine the interdependencies between candidate
variables computing the Partial Mutual Information (PMI). PMI
represents the information between a variable and the classifi-
cation output that is not already present in the previously se-
lected features. The features with maximal PMI were iteratively
selected from the set of candidates. Using the PMI selection
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method, the candidate features were ordered for decreasing val-
ues of mutual information with the classification output. This
also allowed us to identify the most discriminative features for
diagnosis.

The classifier was based on a set of multilayer perceptrons
(MLP). A single hidden layer was used, which is sufficient to
approximate any nonlinear function (universal approximation
property) [25]. Different MLPs had a different number of inputs,
a number of neurons in the hidden layer in the range 4–20
(with sigmoidal activation function) and a single output neuron
(with linear activation function). Different MLP topologies were
trained by modifying iteratively the weights and the bias in
order to reduce the error in fitting the desired output, using
the quasi-Newton algorithm with a number of iterations in the
range 10–50. Once trained, each MLP was used to classify new
data, which were not used for training. Output values lower
than 0.5 were associated with the class 0 (non-bruxers), values
larger than 1.5 to the class 2 (high-frequency bruxers), and
values in between to the class 1 (low-frequency bruxers). The
data were divided into training (70% of data), validation (15%
of data), and test sets (15% of data), choosing randomly the
subjects associated with each set, for 10 times. The MLP with
best generalization performance (i.e., with minimum error in
classifying the validation data) was chosen as optimal. A first
indication of the performance of the optimal MLP was provided
by the error in the test set. Moreover, the topology of the optimal
MLP was further tested on 100 random choices of training (75%
of data) and test sets (25% of data) and an indication of the
average classification performance was provided.

III. RESULTS

The control group reported no complaints, signs, or symptoms
of bruxism, while 13 bruxers of 21 presented abnormal wear
of the teeth, 20 reported discomfort, fatigue or pain of the jaw
muscles, and six showed hypertrophy of the masseter muscles on
voluntary forceful clenching. The VAS for the patient group was
5.3± 1.5. EMG data showed that bruxers exhibited significantly
more orofacial motor activity during sleep than control subjects.
Fig. 3 shows an example of EMG and ECG signals obtained
during a bruxism (left) and not-bruxism masseter contraction.
The number of masseter contractions per night was 168.7± 85.7
for bruxers and 50.5 ± 52.5 for controls. Although the number
of masseter contractions was correlated with the number of SB
episodes (R2 = 0.64, P < 0.0001) (see Fig. 2), the number of
contractions identified as bruxism episode was a small fraction
of the total contractions.

For example, for the bruxers only approximately 15% of the
contractions were bruxism episodes. The number of bruxism
episodes per night and the number of bruxism episodes per
hour were approximately three times greater in bruxers than in
controls (see Table I) (P < 0.0001). There was no association
(Spearman test) between the number of SB episodes per night
or per hour and pain grading on the VAS scale.

The masseter muscle activation during SB episodes was more
asymmetrical for bruxers (As = 57.1 ± 29.8%) than for con-
trols (As = 24.5 ± 33.1%) (P < 0.01). However, the mas-

Fig. 3. Example of portions of signals (EMG, ECG) recorded during a con-
traction identified as a bruxism episode (left) and during another from the same
subject which was excluded, as the estimated heart rate (bottom trace) did not
increase before the contraction.

Fig. 2. Scatter plot between the total number of masseter contractions and the
number of SB episodes per night in all the investigated subjects. The Spearman
test revealed a significant correlation between these two variables Table I. De-
scriptive statistics of the sleep bruxism episodes in the analyzed groups. Data
(R2 = 0.64, P < 0.0001).

seter activity had a similar index of asymmetry between bruxers
(As = 32.6 ± 27.4%) and controls (As = 46.7 ± 24.6) during
the MVC measures at the beginning of the recording session.
The optimal MLP used for the diagnosis had 11 input features,
used 14 hidden neurons for the classification, and was trained
for ten iterations (indeed, often a number of iterations between
10 and 20 was sufficient to get a perfect classification of the
training data; thus, a low number of iterations was selected to
avoid overfitting). The selected input features ordered by PMI
were the followings: number of bruxism episodes, ARV of EMG
during bruxism episodes, number of mixed contractions, num-
ber of awakenings, number of tonic contractions, number of
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TABLE I
DESCRIPTIVE STATISTICS OF THE SLEEP BRUXISM EPISODES

IN THE ANALYZED GROUPS

TABLE II
CLASSIFICATION OF THE OPTIMAL MLP USING EMG AND ECG

mixed contractions not associated with bruxism episodes, num-
ber of phasic contractions, duration of sleep, average activation
time, number of phasic contractions not associated with brux-
ism episodes, and total number of contractions. This ranking
indicates the characteristics most relevant for the diagnosis.

Considering the first ten random choices of training, valida-
tion, and test sets, the classification error in the validation set
was 15 ± 8% and the error on the test set was 31 ± 15%. To
further test the optimal MLP, data were randomly divided into
training (75% of data) and test set (25% of data), for 100 ran-
dom choices, as explained in Section II. Table II summarizes the
results by providing the confusion matrix of the classification.

A control subject (diagnosis: class 0, top row of the
table) was correctly identified as nonbruxer with a probability of
80%. A control subject would be erroneously classified as low-
frequency bruxer with 19% probability and as a high-frequency
bruxer with a probability of only 1%. A high-frequency bruxer
was incorrectly classified as a nonbruxer with probability of
only 1%, although he/she would not be differentiated as high-
or low-frequency bruxer (approximately equal probability for
these two classes). These classification results used features that
needed the HR for their calculation. The classification results
were repeated when using only EMG, for comparison.

TABLE III
CLASSIFICATION OF THE OPTIMAL MLP USING EMG ONLY

When only EMG derivations were used, the optimal MLP had
3 input variables (with the following order of PMI: number of
contractions, average activation time, number of awakenings),
12 hidden neurons, and was trained for 10 iterations. Consider-
ing the first ten random choices of training, validation and test
sets, the classification error was 45 ± 19% in the validation set
and 43 ± 15% in the test set, both greater than when using the
ECG. The classification with only EMG was also further tested
on 100 random choices of training (75% of data) and test sets
(25% of data). Table III provides the confusion matrix of the
classification. This table can be compared to Table II when also
ECG is used for classification (all other conditions are the same,
see also Fig. 3).

The misclassification errors of the control subjects increased
when only EMG was used. Moreover, the identification of a
high-frequency bruxer was not possible neglecting the ECG.

IV. DISCUSSION

The results of this study showed that it is possible to detect
bruxism episodes from EMG and ECG recorded in a natural
environment during sleep and that the joined analysis of EMG
and ECG signals significantly improves the classification of
bruxers according to the clinical diagnostic criteria.

A collection of signs and symptoms related to SB in con-
junction with a complaint by a sleep partner [1] is still the
most efficient and reasonable way to assess SB in clinical
settings [26]. The classic sleep laboratory diagnosis involves
electroencephalography (EEG), EMG, ECG, oximetry, oronasal
thermistors, and nasal cannula pressure transducers with abdom-
inal and chest belts to monitor respiratory changes [27]. Fur-
thermore, to distinguish SB episodes from other oromandibular
activities, simultaneous audio–video recordings are usually per-
formed [8], [10]. In addition to the cost and complexity of use
of these systems, another major limitation is that the recording
environment is not the habitual nocturnal one and some patients
may not tolerate changes in their sleep environment, influencing
the natural occurrence of SB [26]. Thus, in the daily practice,
sleep laboratory recordings are only recommended for com-
plex SB patients, when unexplained findings are present (e.g.,
frequent breakage of teeth or dental restorations) or when
tooth tapping suggests sleep-related epilepsy [26]. To solve the
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problems of polysomnography in the diagnosis of bruxism, sev-
eral portable EMG measurement devices have been previously
produced to diagnose SB [28], [29]. These tools were innovative
because they permitted multiple night recordings in the natural
environment with lower costs. However, EMG alone does not
allow proper characterization of bruxism. Indeed bruxers exhibit
nonpathological orofacial activities during sleep, which can con-
stitute up to 30% of the entire set of oromotor events [16]. Thus,
the use of EMG to detect SB episodes is questionable. In our
study, a statistical correlation was found between the number of
muscular contractions and the number of SB episodes per night
(see Fig. 2). However, the number of SB episodes represented
only the 15% of the entire set of masseter contractions and the as-
sociation between number of contractions and bruxism episodes
was not perfect (see Fig. 2). Accordingly, the classification ac-
curacy based on only EMG in the current study was rather poor
(more than 30% of bruxers were misclassified) (see Table III).
Finally, it is important to underline that up to 60% of the normal
population, i.e., subjects not reporting sleep-related tooth grind-
ing history, exhibits RMMA episodes, but at a low frequency
(about an episode per hour of sleep) [10], as confirmed by our
results in which controls exhibited 0.6 ± 0.6 SB episodes per
hour of sleep (see Table I), suggesting that portable EMG de-
vices cannot differentiate between bruxers and nonbruxers. In
general, even the most recent miniature self-contained EMG de-
tectors [28], [29] do not discriminate SB contractions from other
kinds of similar muscular activities. A multimodal approach is
thus necessary for a more robust automatic diagnosis.

This study is based on the finding that during light sleep, most
SB episodes are observed in relation to brief cardiac and brain re-
activation windows lasting 3–15 s, termed “microarousal” (MA)
and recurring 8–15 times per hour of sleep in young healthy
subjects [30]. Lavigne [12] showed the following SB sequence:
1) a rise in sympathetic cardiac activity around 4 min before
RMMA; 2) a rise in the frequency of EEG activity 4 s before
RMMA; 3) a tachycardia starting one heart beat before RMMA;
4) an increase in jaw opener suprahyoid muscles 0.8 s before
RMMA; and 5) finally, RMMA EMG episodes scored as SB on
masseter muscles [12]. Using this information, the main contri-
bution of this study is the integration of information from both
EMG and ECG to detect SB events. In this way, SB events can
be discriminated from other muscle contractions in a relatively
simple way without complicating the types of features extracted
from the EMG. This study demonstrated a substantial increase
in diagnostic accuracy when the information from the signals
was integrated. The study was performed by the use of a portable
device directly applied by the patients, without technical sup-
port, in their homes. The compliance of the patients was very
good with only one patient who did not tolerate the presence of
the device and particularly of the wires. Other 3 patients were
excluded since they interrupted the measure before 4 h of sleep;
however, they also reported that their sleep was usually very
poor and was not influenced by the device. Bruxers showed in
this study 3 times the number of bruxism episodes per hour of
sleep with respect to the control group, in accordance with the
results obtained by Lavigne et al. [31] in a polysomnographic
(PSG) study on 18 bruxers and 18 controls. Recently, Rompré

et al. [8] identified three subgroups of bruxers who differed in
sleep bruxism frequency: low, moderate, and high. Subjects in
the low SB subgroup had values lower than the cut-off of 4
episode/h proposed by Lavigne et al. [31]. Bruxers recruited in
our study presented characteristics that are comparable to those
classified as low bruxers by Rompré et al. [8]. The data from that
study were collected in a sleep laboratory where severe cases
are often observed: in our study, bruxers were recruited among
patients of a dental clinic of a metropolitan area in the north-
western part of Italy, and in this clinical experience bruxers, in
accordance with the clinical diagnostic criteria, are mainly low
bruxers. This is probably due to another observation performed
by Rompré et al. [8]: they suggested that pain is frequently
reported among sleep bruxers who display low frequencies of
jaw muscle contractions. Pain is the main reason for a patient
seeking care, and thus for a sleep bruxer pain, discomfort, or
fatigue of the jaw muscles could represent the main reason for
seeking dental care.

The classification of subjects was performed by an MLP,
which proved good accuracy in classifying bruxers from non-
bruxers, although the differentiation between high- and low-
frequency bruxers showed lower accuracy. Classification per-
formances decreased if only EMG was used, indicating the im-
portance of including ECG for a correct investigation of SB
episodes.

In addition to automatic diagnosis, the recording of EMG
during sleeping also allows the analysis of symmetry in mus-
cle activity. In this study, controls and bruxers had a different
asymmetry index, with a more asymmetrical activation of the
masseter muscles of bruxers (see Table I). The observed asym-
metry was not related to differences in electrode location or
differences in skin-electrode contact, since the EMGs at MVC
were symmetric. The asymmetric activation is probably due to
the fact that sleep bruxism has a combination of clenching and
grinding [2]: when clenching is prevalent, the masseter activa-
tion is probably more symmetric; when grinding is prevalent the
masseter activation is probably more asymmetric with a more
important muscular activation on the side of the mandibular
movement. The information on muscle activation symmetry can
be obtained only from bilateral recordings, which are, therefore,
preferable over unilateral systems [28], [29].

V. CONCLUSION

We proposed a method for the automatic diagnosis of brux-
ism based on the analysis of bilateral EMG and ECG signals.
The approach provides good classification results according to
the SB/DC [1]. The signals were recorded in a natural envi-
ronment with a portable device. With respect to other portable
EMG devices, the system used allows recording the masseter
contractions of both sides together with the hearth rate. The
joint information on EMG activity and HR provides classifica-
tion results substantially better than when using EMG alone.
It is concluded that the system proposed (portable device and
signal processing) could be useful as a screening test for those
subjects referring to the dental office with signs and symptoms
of SB.
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